Received 25 October 2006

Accepted 16 November 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shao-Hua Ding,^a Xiao-Chang Sun,^a Ya-Lin Zhu,^a Qi Chen^b and Yan Xu^a*

^aInstitute of Chemistry for Functionalized Materials, College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China, and ^bChemical Analysis Center, Liaoning Normal University, Dalian 116029, People's Republic of China

Correspondence e-mail: yanxu@lnnu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (S–O) = 0.005 Å R factor = 0.022 wR factor = 0.052 Data-to-parameter ratio = 10.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. $Eu(SO_4)(OH)$ was obtained hydrothermally from an aqueous solution of europium(III) nitrate, trimethylamine and sulfuric acid. The structure features nine-coordinated europium with sulfate and hydroxide anions acting as bridging ligands.

Europium(III) sulfate hydroxide

Comment

Over the past few decades, the synthesis of new threedimensional frameworks has received great attention, because of their functional applications in catalysis, ion-exchange and optical devices. As the building elements of open-frameworks, not only silicon but also germanium oxoanions have been chosen to synthesize new frameworks (Li *et al.*, 1998; Lin *et al.*2003; Plévert *et al.*, 2001; Xu, Fan, Chino *et al.*, 2004; Xu, Fan, Elangovan *et al.*, 2004). In the past few years, an important advance in the synthesis of inorganic materials has been achieved by the study of lanthanide frameworks (Zhang *et al.*, 2004; Yuan *et al.*, 2004; Xu *et al.*, 2006; Doran *et al.*, 2002). In this work, we designed and synthesized the title compound, europium(III) sulfate hydroxide, which features a threedimensional framework.

Similar to La(SO₄)(OH) (Zhang *et al.*, 2004), the framework of the title compound features EuO₉ polyhedra and SO₄ tetrahedra. As shown in Fig. 1, the asymmetric unit contains one Eu³⁺ ion, one SO₄²⁻ group and one hydroxide group. The coordination about Eu is achieved by six bridging sulfate ions;

03

© 2006 International Union of Crystallography All rights reserved

(vi) -x + 1, -y + 1, -z + 1; (vii) -x, -y + 1, -z + 1.

Figure 2 The crystal packing of $Eu(SO_4)(OH)$ in a view along the *c* axis.

each S atom makes four S-O-Eu linkages through bridging O atoms. The coordination is completed by three hydroxide ions, which act as bridging ligands between three Eu^{3+} ions.

The Eu atom has typical geometrical parameters (Table 1); the Eu–O and O–Eu–O bond distances and bond angles are in agreement with those found in other reported rare-earth compounds (Zhang *et al.*, 2004; Yuan *et al.*, 2004). The geometry of the sulfate ions is unexceptional. Fig. 2 shows the three-dimensional arrangement in the crystal structure, displaying the way in which the different Eu ions are connected by bridging sulfate and hydroxide groups, yielding a layered structure.

Experimental

The title compound was synthesized hydrothermally from a mixture of Eu(NO₃)₃·6H₂O (Shanghai Chemical Reagent Factory), H₂SO₄ (Tianjin Kermel Chemical Reagents Development Center), water and trimethylamine (Beijing Yili Chemical Reagents Factory). In a typical synthesis, Eu(NO₃)₃·6H₂O (0.45 g) was dissolved in a mixture of trimethylamine (0.74 g) and water (3.5 g) followed by the addition of H₂SO₄ (98%, 0.03 g) with constant stirring. The mixture was kept in a 25 ml Teflon-lined steel autoclave at 453 K for 6 d. The autoclave was cooled slowly to room temperature, and then the product was filtered off, washed with distilled water and dried at room temperature. Colorless block-shaped crystals of the title compound were obtained.

Crystal data

Z = 4 D_x = 4.978 Mg m⁻³ Mo Kα radiation μ = 18.20 mm⁻¹ T = 293 (2) K Block, colorless 0.09 × 0.09 × 0.06 mm

```
Bruker APEX2 CCD
diffractometer
\omega scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
T_{min} = 0.291, T_{max} = 0.408
(expected range = 0.239–0.335)
```

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.052$ S = 1.04701 reflections 68 parameters Only H-atom coordinates refined 1879 measured reflections 701 independent reflections 644 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.026$ $\theta_{\text{max}} = 26.0^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0301P)^2] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 1.56 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.89 \ {\rm e} \ {\rm \AA}^{-3} \\ & {\rm Extinction \ correction: \ SHELXL97} \\ & {\rm Extinction \ coefficient: \ 0.0147 \ (9)} \end{split}$$

Table 1 Selected geometric parameters (Å, °).

2.332 (4)	Eu1-O4 ^{vi}	2.578 (5)
2.393 (4)	Eu1-O4 ^{vii}	2.782 (4)
2.397 (4)	S1-O1	1.455 (4)
2.450 (4)	S1-O3	1.457 (5)
2.498 (5)	S1-O4	1.469 (4)
2.501 (4)	S1-O2	1.500 (4)
2.503 (4)		
135.42 (15)	O1-S1-O4	111.9 (3)
71.56 (15)	O3-S1-O4	109.5 (3)
139.03 (14)	O1-S1-O2	108.9 (3)
59.28 (14)	O3-S1-O2	108.5 (2)
110.7 (2)	O4-S1-O2	107.3 (3)
	2.332 (4) 2.393 (4) 2.397 (4) 2.450 (4) 2.498 (5) 2.501 (4) 2.503 (4) 135.42 (15) 71.56 (15) 139.03 (14) 59.28 (14) 110.7 (2)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2},$ (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z; (iv) -x + 1, -y + 1, -z; (v) -x, -y + 1, -z + 1; (vi) -x, -y + 1, -z; (vii) x, y, z + 1.

The highest peak in the difference map is 0.88 (2) Å from atom Eu1. The H atom was located in a difference Fourier map and the positional parameters were refined [O-H = 0.84 (2) Å].

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Foundation of Liaoning Province (20062139).

References

- Bruker (2005). APEX2 (Version 1.27) and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Doran, M., Norquist, A. & O'Hare, D. (2002). Chem. Commun. pp. 2946–2947.
- Li, H., Eddaoudi, M., Richardson, D. A. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8567–8568.
- Lin, Z., Zhang, J. & Yang, G. (2003). Inorg. Chem. 42, 1797-1799.
- Plévert, J., Gentz, T. M., Laine, A., Li, H., Young, V. G., Yaghi, O. M. & O'Keeffe, M. (2001). J. Am. Chem. Soc. 123, 12706–12707.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
- Xu, Y., Ding, S.-H., Zhou, G.-P. & Liu, Y.-G. (2006). Acta Cryst. E62, m1749– m1750.

- Xu, Y., Fan, W., Chino, N., Uehara, K., Hikichi, S., Mizuno, N., Ogura, M. & Okubo, T. (2004). *Chem. Lett.* **33**, 74–75.
- Xu, Y., Fan, W., Elangovan, S. P., Ogura, M. & Okubo, T. (2004). Eur. J. Inorg. Chem. pp. 4547–4549.
- Yuan, Y., Song, J. & Mao, J. (2004). *Inorg. Chem. Commun.* **7**, 24–26. Zhang, Q., Lu, C., Yang, W., Chen, S. & Yu, Y. (2004). *Inorg. Chem. Commun.* **7**, 889–892.